التوضيح:
المسألة الأولى: باعتبار الخنثى ذكراً أصلها من (2):
للابن واحد (1).
وللولد الخثنى واحد (1).
المسألة الثانية: باعتبار أنوثة الخنثى أصلها من ثلاثة (3).
للابن الواضح (2).
وللخنثى باعتباره أنثى (1).
وبالنظر بين المسألتين بالنسب الأربع وجدنا بينهما تبايناً.
فضربنا عدد إحدى المسألتين في الأخرى:
3 × 2 أو 2 × 3 = 6 وهذا الناتج هو الجامعة للمسألتين.
ثم قسمنا الجامعة على كل مسألة من المسألتين والخارج من القسمة هو جزء سهم المسألة رقمنا كل منهما فوق مسألته:
المسألة الأولى: 6 ÷ 2 = 3 جزء سهم المسألة الأولى.
المسألة الثانية: 6 ÷ 3 = 2 جزء سهم المسألة الثانية.
ولمعرفة نصيب ما لكل واحد من المسألتين ليُعطى الأقل عملنا الآتي:
ضربنا نصيب كل واحد من المسألتين في جزء سهم المسألة وقارنا بين حاصل الضربين وأعطيناه أقل العددين:
فالابن: له من المسألة الأولى باعتبار ذكورة الخنثى ... 1 × 3 = 3.
وله من المسألة الثانية باعتبارأنوثة الخنثى ... 2 × 2 = 4.
فأعطي الأقل وهو (3) ورقم مقابل اسمه.
والخنثى: له من المسألة الأولى باعتباره ذكراً 1 × 3 = 3.
وله من المسألة الثانية باعتباره أنثى 1 × 2 = 2.